Importers
cognite.neat.rules.importers
#
BaseImporter
#
Bases: ABC
, Generic[T_InputRules]
BaseImporter class which all importers inherit from.
Source code in cognite/neat/rules/importers/_base.py
DMSImporter
#
Bases: BaseImporter[DMSInputRules]
Imports a Data Model from Cognite Data Fusion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema |
DMSSchema
|
The schema containing the data model. |
required |
read_issues |
Sequence[NeatIssue] | None
|
A list of issues that occurred during the import. |
None
|
metadata |
DMSInputMetadata | None
|
Metadata for the data model. |
None
|
ref_metadata |
DMSInputMetadata | None
|
Metadata for the reference data model. |
None
|
Source code in cognite/neat/rules/importers/_dms2rules.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
|
from_data_model_id(client, data_model_id, reference_model_id=None)
classmethod
#
Create a DMSImporter ready to convert the given data model to rules.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
client |
CogniteClient
|
Instantiated CogniteClient to retrieve data model. |
required |
reference_model_id |
DataModelIdentifier | None
|
The reference data model to retrieve. This is the data model that the given data model is built on top of, typically, an enterprise data model. |
None
|
data_model_id |
DataModelIdentifier
|
Data Model to retrieve. |
required |
Returns:
Name | Type | Description |
---|---|---|
DMSImporter |
DMSImporter
|
DMSImporter instance |
Source code in cognite/neat/rules/importers/_dms2rules.py
DTDLImporter
#
Bases: BaseImporter[InformationInputRules]
Importer from Azure Digital Twin - DTDL (Digital Twin Definition Language).
This importer supports DTDL v2.0 and v3.0.
It is recommended to use the class methods from_directory
and from_zip
to create an instance of this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
items |
Sequence[DTDLBase]
|
A sequence of DTDLBase objects. |
required |
title |
str
|
Title of the data model. Defaults to None. |
None
|
read_issues |
list[ValidationIssue]
|
A list of issues that occurred during reading. Defaults to None. |
None
|
schema |
SchemaCompleteness
|
Schema completeness. Defaults to SchemaCompleteness.partial. |
partial
|
Source code in cognite/neat/rules/importers/_dtdl2rules/dtdl_importer.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
IMFImporter
#
Bases: BaseImporter[InformationInputRules]
Convert SHACL shapes to tables/ transformation rules / Excel file.
Args:
filepath: Path to RDF file containing the SHACL Shapes
Note
Rewrite to fit the SHACL rules we apply OWL Ontologies are information models which completeness varies. As such, constructing functional data model directly will often be impossible, therefore the produced Rules object will be ill formed. To avoid this, neat will automatically attempt to make the imported rules compliant by adding default values for missing information, attaching dangling properties to default containers based on the property type, etc.
One has to be aware that NEAT will be opinionated about how to make the ontology compliant, and that the resulting rules may not be what you expect.
Source code in cognite/neat/rules/importers/_rdf/_imf2rules/_imf2rules.py
InferenceImporter
#
Bases: BaseImporter[InformationInputRules]
Infers rules from a triple store.
Rules inference through analysis of knowledge graph provided in various formats. Use the factory methods to create a triple store from sources such as RDF files, JSON files, YAML files, XML files, or directly from a graph store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
issue_list |
IssueList
|
Issue list to store issues |
required |
graph |
Graph
|
Knowledge graph |
required |
max_number_of_instance |
int
|
Maximum number of instances to be used in inference |
-1
|
prefix |
str
|
Prefix to be used for the inferred model |
'inferred'
|
Source code in cognite/neat/rules/importers/_rdf/_inference2rules.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
to_rules()
#
Creates Rules
object from the data for target role.
Source code in cognite/neat/rules/importers/_rdf/_inference2rules.py
OWLImporter
#
Bases: BaseImporter[InformationInputRules]
Convert OWL ontology to tables/ transformation rules / Excel file.
Args:
filepath: Path to OWL ontology
Note
OWL Ontologies are information models which completeness varies. As such, constructing functional data model directly will often be impossible, therefore the produced Rules object will be ill formed. To avoid this, neat will automatically attempt to make the imported rules compliant by adding default values for missing information, attaching dangling properties to default containers based on the property type, etc.
One has to be aware that NEAT will be opinionated about how to make the ontology compliant, and that the resulting rules may not be what you expect.
Source code in cognite/neat/rules/importers/_rdf/_owl2rules/_owl2rules.py
ExcelImporter
#
Bases: BaseImporter[T_InputRules]
Import rules from an Excel file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath |
Path
|
The path to the Excel file. |
required |
Source code in cognite/neat/rules/importers/_spreadsheet2rules.py
GoogleSheetImporter
#
Bases: BaseImporter[T_InputRules]
Import rules from a Google Sheet.
.. warning::
This importer is experimental and may not work as expected.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sheet_id |
str
|
The Google Sheet ID. |
required |
skiprows |
int
|
The number of rows to skip when reading the Google Sheet. |
1
|
Source code in cognite/neat/rules/importers/_spreadsheet2rules.py
YAMLImporter
#
Bases: BaseImporter[T_InputRules]
Imports the rules from a YAML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raw_data |
dict[str, Any]
|
The raw data to be imported. |
required |
.. note::
YAML files are typically used for storing rules when checked into version control systems, e.g., git-history.
The advantage of using YAML files over Excel is that tools like git can show the differences between different
versions of the rules.